If it's not what You are looking for type in the equation solver your own equation and let us solve it.
112=128t^2-16t
We move all terms to the left:
112-(128t^2-16t)=0
We get rid of parentheses
-128t^2+16t+112=0
a = -128; b = 16; c = +112;
Δ = b2-4ac
Δ = 162-4·(-128)·112
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-240}{2*-128}=\frac{-256}{-256} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+240}{2*-128}=\frac{224}{-256} =-7/8 $
| -2+9-6x+3=5 | | x^2-6^x+9=0 | | -35+6n=3n-2(1-7n) | | n2=46 | | 15x-43=90 | | k/10=10/5 | | 4(2d+5)-2=-2(2d+5) | | (Z-4)^2-(z.8)^2+45=0 | | -10=w/4-6 | | 5y-7-(y-3)=100 | | 5y+10y=90 | | 9(2a+3)=-9 | | 3(x=3)=2(x-1) | | -8n=12=12-8n | | x×(x+1)×(x+2)=120 | | x+0.05x=33 | | 2/3x+1/4=9/10 | | 7w-14=7 | | w/4+2=8 | | x*x*x-16=x^2+8x+16 | | 3x+-2=-17 | | 7x-12x+7=3x+23 | | t+2.5=-14 | | 3h-5h-+11=17 | | 2(2-7k)+13=-109 | | 13=(w-14)/2 | | 5(p-1)=2p+7 | | 4x+-12=8x+24 | | 5/x=30/36 | | 10x1.4x-5.7x10=19.5 | | -(y+11)-5y=-(2y-9) | | -64-6x=26-9x |